Matrix

An $m \times n$ (read "m by n") matrix, denoted by \mathbf{A}, is a rectangular array of entries or elements (numbers, or symbols representing numbers) enclosed typically by square brackets, where m is the number of rows and n the number of columns.

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

A gray-scale image is often represented by a matrix whose elements are intensity values of pixels

Review: Matrices and Vectors

Matrix Definitions (Con't)

- A is square if $m=n$.
- A is diagonal if all off-diagonal elements are 0 , and not all diagonal elements are 0 .
- A is the identity matrix (\mathbf{I}) if it is diagonal and all diagonal elements are 1.
- A is the zero or null matrix ($\mathbf{0}$) if all its elements are 0 .
- The trace of A equals the sum of the elements along its main diagonal.
- Two matrices A and \mathbf{B} are equal iff the have the same number of rows and columns, and $a_{i j}=b_{i j}$.

Review: Matrices and Vectors

Matrix Definitions (Con't)

- The transpose \mathbf{A}^{T} of an $m \times n$ matrix \mathbf{A} is an $n \times m$ matrix obtained by interchanging the rows and columns of \mathbf{A}.
- A square matrix for which $\mathbf{A}^{T}=\mathbf{A}$ is said to be symmetric.
- Any matrix \mathbf{X} for which $\mathbf{X A}=\mathbf{I}$ and $\mathbf{A X}=\mathbf{I}$ is called the inverse of \mathbf{A}.
- Let c be a real or complex number (called a scalar). The scalar multiple of c and matrix \mathbf{A}, denoted $c \mathbf{A}$, is obtained by multiplying every elements of \mathbf{A} by c. If $c=-1$, the scalar multiple is called the negative of \mathbf{A}.

Review: Matrices and Vectors

Block Matrix

A block matrix is a matrix that is defined using smaller matrices, called blocks
Example $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right], C=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right], D=\left[\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right]$

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll:ll}
1 & 2 & 2 & 3 \\
3 & 4 & 4 & 5 \\
\hdashline 3 & 4 & 4 & 5 \\
5 & 6 & 6 & 7
\end{array}\right]
$$

Exercise (Hadamard Matrix)

$$
A_{1}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], A_{2 n}=\left[\begin{array}{cc}
A_{n} & A_{n} \\
A_{n} & -A_{n}
\end{array}\right]
$$

Review: Matrices and Vectors

Block Matrix ($c o n$ 't)

$W=256$

divided into 10248×8 block matrices in JPEG compression

Review: Matrices and Vectors

Row and Column Vectors

A column vector is an $m \times 1$ matrix:

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right]
$$

A row vector is a $1 \times n$ matrix:

$$
\mathbf{b}=\left[b_{1}, b_{2}, \cdots b_{n}\right]
$$

A column vector can be expressed as a row vector by using the transpose:

$$
\mathbf{a}^{T}=\left[a_{1}, a_{2}, \cdots, a_{m}\right]
$$

Vector Norms

There are numerous norms that are used in practice. In our work, the norm most often used is the so-called 2-norm, which, for a vector \mathbf{x} in real \mathfrak{R}^{m}, space is defined as

$$
\|\mathbf{x}\|=\left[x_{1}^{2}+x_{2}^{2}+\cdots+x_{m}^{2}\right]^{1 / 2}
$$

which is recognized as the Euclidean distance from the origin to point \mathbf{x}; this gives the expression the familiar name Euclidean norm. The expression also is recognized as the length of a vector \mathbf{x}, with origin at point $\mathbf{0}$. From earlier discussions, the norm also can be written as

$$
\|\mathbf{x}\|=\left[\mathbf{x}^{T} \mathbf{x}\right]^{1 / 2}
$$

Some Basic Matrix Operations

- The sum of two matrices \mathbf{A} and \mathbf{B} (of equal dimension), denoted $\mathbf{A}+\mathbf{B}$, is the matrix with elements $a_{i j}+b_{i j}$.
- The difference of two matrices, $\mathbf{A}-\mathbf{B}$, has elements $a_{i j}-b_{i j}$.
- The product, $\mathbf{A B}$, of $m \times n$ matrix \mathbf{A} and $n \times q$ matrix \mathbf{B}, is an $m \times q$ matrix \mathbf{C} whose (i, j)-th element is formed by multiplying the entries across the i th row of \mathbf{A} times the entries down the j th column of \mathbf{B}; that is,

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Some Basic Matrix Operations (Con't)

The inner product (also called dot product) of two vectors

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

is defined as

$$
\begin{aligned}
\mathbf{a}^{T} \mathbf{b} & =\mathbf{b}^{T} \mathbf{a}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{m} b_{m} \\
& =\sum_{i=1}^{m} a_{i} b_{i}
\end{aligned}
$$

Note that the inner product is a scalar.

Inner Product

The Cauchy-Schwartz inequality states that

$$
\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

Another well-known result used in the book is the expression

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

where θ is the angle between vectors \mathbf{x} and \mathbf{y}. From these expressions it follows that the inner product of two vectors can be written as

$$
\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

Thus, the inner product can be expressed as a function of the norms of the vectors and the angle between the vectors.

Review: Matrices and Vectors

Geometric Intuition

Figure 1: The dot product is fundamentally a projection.
$\vec{v} \cdot \frac{\vec{w}}{|\vec{w}|}=|\vec{v}| \cos \theta \Rightarrow \vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos \theta$

Orthogonality and Orthonormality

From the preceding results, two vectors in \mathfrak{R}^{m} are orthogonal if and only if their inner product is zero. Two vectors are orthonormal if, in addition to being orthogonal, the length of each vector is 1 .

From the concepts just discussed, we see that an arbitrary vector \mathbf{a} is turned into a vector \mathbf{a}_{n} of unit length by performing the operation $\mathbf{a}_{n}=\mathbf{a} /\|\mathbf{a}\|$. Clearly, then, $\left\|\mathbf{a}_{n}\right\|=1$.

A set of vectors is said to be an orthogonal set if every two vectors in the set are orthogonal. A set of vectors is orthonormal if every two vectors in the set are orthonormal.

Some Important Aspects of Orthogonality

Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be an orthogonal or orthonormal basis in the sense defined in the previous section. Then, an important result in vector analysis is that any vector v can be represented with respect to the orthogonal basis B as

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where the coefficients are given by

$$
\begin{aligned}
\alpha_{i} & =\frac{\mathbf{v}^{T} \mathbf{v}_{i}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}} \\
& =\frac{\mathbf{v}^{T} \mathbf{v}_{i}}{\left\|\mathbf{v}_{i}\right\|^{2}}
\end{aligned}
$$

Review: Matrices and Vectors

Geometric Example

Sets and Set Operations

Probability events are modeled as sets, so it is customary to begin a study of probability by defining sets and some simple operations among sets.

A set is a collection of objects, with each object in a set often referred to as an element or member of the set. Familiar examples include the set of all image processing books in the world, the set of prime numbers, and the set of planets circling the sun. Typically, sets are represented by uppercase letters, such as A, B, and C, and members of sets by lowercase letters, such as a, b, and c.

Sets and Set Operations (Con't)

We denote the fact that an element a belongs to set A by

$$
a \in A
$$

If a is not an element of A, then we write

$$
a \notin A
$$

A set can be specified by listing all of its elements, or by listing properties common to all elements. For example, suppose that I is the set of all integers. A set B consisting the first five nonzero integers is specified using the notation

$$
B=\{1,2,3,4,5\}
$$

Sets and Set Operations (Con't)

The set of all integers less than 10 is specified using the notation

$$
\begin{array}{l|l|}
\hline C=\{c \in I & c<10\} \\
\hline
\end{array}
$$

which we read as " C is the set of integers such that each members of the set is less than 10. " The "such that" condition is denoted by the symbol " |". As shown in the previous two equations, the elements of the set are enclosed by curly brackets.

The set with no elements is called the empty or null set, denoted in this review by the symbol \varnothing.

Sets and Set Operations (Con't)

Two sets A and B are said to be equal if and only if they contain the same elements. Set equality is denoted by

$$
A=B
$$

If the elements of two sets are not the same, we say that the sets are not equal, and denote this by

$$
A \neq B
$$

If every element of B is also an element of A, we say that B is a subset of A :

$$
B \subseteq A
$$

Some Basic Set Operations

The operations on sets associated with basic probability theory are straightforward. The union of two sets A and B, denoted by

$$
A \cup B
$$

is the set of elements that are either in A or in B, or in both. In other words,

$$
A \cup B=\{z \mid z \in A \text { or } z \in B\}
$$

Similarly, the intersection of sets A and B, denoted by

$$
A \cap B
$$

is the set of elements common to both A and B; that is,

$$
A \cap B=\{z \mid z \in A \text { and } z \in B\}
$$

Set Operations (Con't)

Two sets having no elements in common are said to be disjoint or mutually exclusive, in which case

$$
A \cap B=\emptyset
$$

The complement of set A is defined as

$$
A^{c}=\{z \mid z \notin A\}
$$

Clearly, $\left(A^{c}\right)^{c}=A$. Sometimes the complement of A is denoted as \bar{A}.
The difference of two sets A and B, denoted $A-B$, is the set of elements that belong to A, but not to B. In other words,

$$
A-B=\{z \mid z \in A, z \notin B\}
$$

Review: Probability and Random Variables

Set Operations (Con't)

Relative Frequency \& Probability

A random experiment is an experiment in which it is not possible to predict the outcome. Perhaps the best known random experiment is the tossing of a coin. Assuming that the coin is not biased, we are used to the concept that, on average, half the tosses will produce heads (H) and the others will produce tails (T). Let n denote the total number of tosses, n_{H} the number of heads that turn up, and n_{T} the number of tails. Clearly,

$$
n_{H}+n_{T}=n
$$

Relative Frequency \& Prob. (Con't)

Dividing both sides by n gives

$$
\frac{n_{H}}{n}+\frac{n_{T}}{n}=1 .
$$

The term n_{H} / n is called the relative frequency of the event we have denoted by H, and similarly for n_{T} / n. If we performed the tossing experiment a large number of times, we would find that each of these relative frequencies tends toward a stable, limiting value. We call this value the probability of the event, and denoted it by P (event).

Relative Frequency \& Prob. (Con't)

In the current discussion the probabilities of interest are $P(H)$ and $P(T)$. We know in this case that $P(H)=P(T)=1 / 2$. Note that the event of an experiment need not signify a single outcome. For example, in the tossing experiment we could let D denote the event "heads or tails," (note that the event is now a set) and the event E, "neither heads nor tails." Then, $P(D)=1$ and $P(E)=0$.
The first important property of P is that, for an event A,

$$
0 \leq P(A) \leq 1 \text {. }
$$

That is, the probability of an event is a positive number bounded by 0 and 1 . Let S be the set of all possible events

$$
P(S)=1 \text {. }
$$

Random Variables

Random variables often are a source of confusion when first encountered. This need not be so, as the concept of a random variable is in principle quite simple. A random variable, x, is a real-valued function defined on the events of the sample space, S. In words, for each event in S, there is a real number that is the corresponding value of the random variable. Viewed yet another way, a random variable maps each event in S onto the real line. That is it. A simple, straightforward definition.

Discrete: denumerable events Continuous: indenumerable events

Discrete Random Variables

Example I: Consider again the experiment of drawing a single card from a standard deck of 52 cards. Suppose that we define the following events. A : a heart; B : a spade; C : a club; and D : a diamond, so that $S=\{A, B, C, D\}$. A random variable is easily defined by letting $x=1$ represent event $A, x=2$ represent event B, and so on.

event	notation	probability
A	$x=1$	$1 / 4$
B	$x=2$	$1 / 4$
C	$x=3$	$1 / 4$
D	$x=4$	$1 / 4$

Discrete Random Variables (Con't)

Example II:, consider the experiment of throwing a single die with two faces of " 1 " and no face of " 6 ". Let us use $x=1,2,3,4,5$ to denote the five possible events. Then the random variable X is defined by

event	notation	probability
" 1 " appears	$x=1$	$1 / 3$
" 2 " appears	$x=2$	$1 / 6$
" 3 " appears	$x=3$	$1 / 6$
" 4 " appears	$x=4$	$1 / 6$
" 5 " appears	$x=5$	$1 / 6$

Therefore, the probability of getting " $1,2,1$ " in the expepriment of throwing the dice three times is $1 / 3 \times 1 / 6 \times 1 / 3=1 / 54$

Discrete Random Variables (Con't)

Example III: For a gray-scale image ($L=256$), we can use the notation $p\left(r_{k}\right), k=0,1, \ldots, L-1$, to denote the histogram of an image with L possible gray levels, $r_{k}, k=0,1, \ldots, L-1$, where $p\left(r_{k}\right)$ is the probability of the k th gray level (random event) occurring. The discrete random variables in this case are gray levels.

Question: Given an image, how to calculate its histogram?

You will be asked to do this using MATLAB in the first computer assignment

Continuous Random Variables

Thus far we have been concerned with random variables whose values are discrete. To handle continuous random variables we need some additional tools. In the discrete case, the probabilities of events are numbers between 0 and 1 . When dealing with continuous quantities (which are not denumerable) we can no longer talk about the "probability of an event" because that probability is zero. This is not as unfamiliar as it may seem. For example, given a continuous function we know that the area of the function between two limits a and b is the integral from a to b of the function. However, the area at a point is zero because the integral from,say, a to a is zero. We are dealing with the same concept in the case of continuous random variables.

Contìnuous Random Variables (Con't)

Thus, instead of talking about the probability of a specific value, we talk about the probability that the value of the random variable lies in a specified range. In particular, we are interested in the probability that the random variable is less than or equal to (or, similarly, greater than or equal to) a specified constant a. We write this as

$$
F(a)=P(x \leq a)
$$

If this function is given for all values of a (i.e., $-\infty<a<\infty$), then the values of random variable x have been defined. Function F is called the cumulative probability distribution function or simply the cumulative distribution function (cdf).

Contìnuous Random Variables (Con't)

Due to the fact that it is a probability, the cdf has the following properties:

$$
\begin{aligned}
& \text { 1. } F(-\infty)=0 \\
& \text { 2. } F(\infty)=1 \\
& \text { 3. } 0 \leq F(x) \leq 1 \\
& \text { 4. } F\left(x_{1}\right) \leq F\left(x_{2}\right) \text { if } \quad x_{1}<x_{2} \\
& \text { 5. } P\left(x_{1}<x \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right) \\
& \text { 6. } F\left(x^{+}\right)=F(x) \text {, }
\end{aligned}
$$

where $\mathrm{x}^{+}=\mathrm{x}+\varepsilon$, with ε being a positive, infinitesimally small number.

Contìnuous Random Variables (Con't)

The probability density function (pdf) of random variable x is defined as the derivative of the cdf:

$$
p(x)=\frac{d F(x)}{d x}
$$

The term density function is commonly used also. The pdf satisfies the following properties:

1. $p(x) \geq 0$ for all x
2. $\int_{-\infty}^{\infty} p(x) d x=1$
3. $F(x)=\int_{-\infty}^{x} p(\alpha) d \alpha$, where α is a dummy variable
4. $P\left(x_{1}<x \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} p(x) d x$.

Mean of a Random Variable

The mean of a random variable X is defined by

$$
E[x]=\bar{x}=m=\int_{-\infty}^{\infty} x p(x) d x
$$

when x is continuos and

$$
E[x]=\bar{x}=m=\sum_{i=1}^{N} x_{i} P\left(x_{i}\right)
$$

when x is discrete.

Variance of a Random Variable

The variance of a random variable, is defined by

$$
\sigma^{2}=E\left[x^{2}\right]=\int_{-\infty}^{\infty} x^{2} p(x) d x
$$

for continuous random variables and

$$
\sigma^{2}=E\left[x^{2}\right]=\sum_{i=1}^{N} x_{i}^{2} P\left(x_{i}\right)
$$

for discrete variables.

Normalized Variance \& Standard Deviation

Of particular importance is the variance of random variables that have been normalized by subtracting their mean. In this case, the variance is

$$
\sigma^{2}=E\left[(x-m)^{2}\right]=\int_{-\infty}^{\infty}(x-m)^{2} p(x) d x
$$

and

$$
\sigma^{2}=E\left[(x-m)^{2}\right]=\sum_{i=1}^{N}\left(x_{i}-m\right)^{2} P\left(x_{i}\right)
$$

for continuous and discrete random variables, respectively. The square root of the variance is called the standard deviation, and is denoted by σ.

The Gaussian Probability Density Function

A random variable is called Gaussian if it has a probability density of the form

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-m)^{2} / \sigma^{2}}
$$

where m and σ are the mean and variance respectively. A Gaussin random variable is often denoted by $\mathrm{N}\left(\mathrm{m}, \sigma^{2}\right)$

System

With reference to the following figure, we define a system as a unit that converts an input function $f(x)$ into an output (or response) function $g(x)$, where x is an independent variable, such as time or, as in the case of images, spatial position. We assume for simplicity that x is a continuous variable, but the results that will be derived are equally applicable to discrete variables.

System Operator

It is required that the system output be determined completely by the input, the system properties, and a set of initial conditions. From the figure in the previous page, we write

$$
g(x)=H[f(x)]
$$

where H is the system operator, defined as a mapping or assignment of a member of the set of possible outputs $\{g(x)\}$ to each member of the set of possible inputs $\{f(x)\}$. In other words, the system operator completely characterizes the system response for a given set of inputs $\{f(x)\}$.

Review: Linear Systems

Linearity

An operator H is called a linear operator for a class of inputs $\{f(x)\}$ if

$$
\begin{aligned}
H\left[\alpha_{i} f_{i}(x)+\alpha_{j} f_{j}(x)\right] & =a_{i} H\left[f_{i}(x)\right]+a_{j} H\left[f_{j i}(x)\right] \\
& =a_{i} g_{i}(x)+a_{j} g_{j}(x)
\end{aligned}
$$

for all $f_{i}(x)$ and $f_{j}(x)$ belonging to $\{f(x)\}$, where the a 's are arbitrary constants and

$$
g_{i}(x)=H\left[f_{i}(x)\right]
$$

is the output for an arbitrary input $f_{i}(x) \in\{f(x)\}$.

Time Invariance

An operator H is called time invariant (if x represents time), spatially invariant (if x is a spatial variable), or simply fixed parameter, for some class of inputs $\{f(x)\}$ if

$$
g_{i}(x)=H\left[f_{i}(x)\right] \text { implies that } g_{i}\left(x+x_{0}\right)=H\left[f_{i}\left(x+x_{0}\right)\right]
$$

for all $f_{i}(x) \in\{f(x)\}$ and for all x_{0}.

Review: Linear Systems

Discrete LTI System: digital fillter

$$
\begin{aligned}
& f(n) \longrightarrow h(n) \longrightarrow g(n) \\
& g(n)=\sum_{k=-\infty}^{\infty} h(k) f(n-k)=h(n) \underset{\downarrow}{\otimes} f(n)
\end{aligned}
$$

Linear convolution

- Linearity $a_{1} f_{1}(n)+a_{2} f_{2}(n) \rightarrow a_{1} g_{1}(n)+a_{2} g_{2}(n)$
- Time-invariant property $\quad f\left(n-n_{0}\right) \rightarrow g\left(n-n_{0}\right)$

Communitive Property of Convolution

$$
\begin{aligned}
& h(n) \otimes f(n)=\sum_{k=-\infty}^{\infty} h(k) f(n-k) \\
& =\sum_{r=-\infty}^{\infty} h(n-r) f(r)=f(n) \otimes h(n) \\
r= & n-k
\end{aligned}
$$

Conclusion
The order of linear convolution doesn't matter.

Continuous Fourier Transform

$$
\begin{gathered}
\text { forward } \quad F(w)=\int_{-\infty}^{\infty} f(x) e^{-j 2 \pi w x} d x \\
\text { inverse } \quad f(x)=\int_{-\infty}^{\infty} F(w) e^{j 2 \pi w x} d w
\end{gathered}
$$

By representing a signal in frequency domain, FT facilitates the analysis and manipulation of the signal (e.g., think of the classification of female and male speech signals)

Fourier Transform of Sequences (Fourier Series)

forward
$F(w)=\sum_{-\infty}^{\infty} f(n) e^{-j w n}$

inverse $\quad f(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(w) e^{j w n} d w$
time-domain convolution

$$
f(n) \otimes h(n)
$$

frequency-domain multiplication

$$
F(w) H(w)
$$

Note that the input signal is a discrete sequence while its FT is a continuous function

- Low-pass and high-pass filters:
$|H(w)|$

Examples: LP-h(n)=[lll 11$] / 2 \quad H P-h(n)=\left[\begin{array}{ll}1 & -1\end{array}\right] / 2$

- Frequency domain analysis

- Properties of FT
-periodic $\quad X(w+2 k \pi)=X(w), \forall k \in Z$
-time shifting $\quad x\left(n-n_{0}\right) \leftrightarrow e^{-j w n_{0}} X(w)$
-modulation $\quad e^{-j w_{0} n} x(n) \leftrightarrow X\left(w+w_{0}\right)$
-convolution $\quad x(n) * h(n) \leftrightarrow X(w) H(w)$

Discrete Fourier Transform

forward $\quad F(k)=\frac{1}{N} \sum_{n=0}^{N-1} f(n) W_{N}^{k n}, k=0,1, \ldots, N-1$

$$
\oint W_{N}=\exp \left\{-\frac{j 2 \pi}{N}\right\}
$$

inverse $\quad f(n)=\frac{1}{N} \sum_{n=0}^{N-1} F(k) W_{N}^{-k n}, n=0,1, \ldots, N-1$
Exercise 1. proof $W_{N}^{N}=1$
2. What is $\exp \{-j \pi\}$?

Two-dimensional Extension

- 2D filter
-2 D filter is defined as 2 D convolution

$$
y(m, n)=\sum_{k, l=-\infty}^{\infty} h(m-k, n-l) x(k, l)
$$

-we mostly consider 2D separable filters, i.e.

$$
h(m, n)=h_{r}(m) h_{c}(n)
$$

- 2D Frequency domain analysis

$$
\begin{gathered}
x(m, n) \underset{\text { IFT }}{\rightleftarrows} \text { FT } X\left(w_{1}, w_{2}\right)=\sum_{m, n} x(m, n) e^{-j\left(m w_{1}+n w_{2}\right)} \\
\text { frequency }
\end{gathered}
$$

- Properties of 2D FT
-periodic $X\left(w_{1}+2 k \pi, w_{2}+2 l \pi\right)=X\left(w_{1}, w_{2}\right), \forall k, l \in Z$
-time shifting $x\left(m+m_{0}, n+n_{0}\right) \leftrightarrow e^{j\left(m_{0} w_{1}+n_{0} w_{2}\right)} X\left(w_{1}, w_{2}\right)$
-modulation $e^{-j\left(w_{01} m+w_{02} n\right)} x(m, n) \leftrightarrow X\left(w_{1}+w_{01}, w_{2}+w_{02}\right)$
-convolution $x(m, n) * h(m, n) \leftrightarrow X\left(w_{1}, w_{2}\right) H\left(w_{1}, w_{2}\right)$

Review: Image Basics

Image Acquisition

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Sampling and Quantization

a	b
c	

c d
FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Spatial and Gray=level Resolution

a b
FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Spatial resolution: dimension of digitized image (e.g., VGA 640-by-480) Gray-level resolution: how many different gray levels are there in the image? (e.g., 8 -bits means 256 different levels)

8-bit Grayscale Images

gray-level: 8 bits or 1 byte per pixel
Raw image data No header information, just pack the pixel values in a rastering scanning order

The size of a raw image file is HW bytes (H, W are the height and width of the image)

Binary Images

0: black pixels

255: white pixels
(sometimes it is normalized to 1)

Review: Image Basics

Color Images

Green

Blue

Portable Grayscale Map (PGM) , Portable Pixel Map (PPM) and Portable Bit Map (PBM)

Header Structure

P3 \# magic number
1024 \# the image width
788 \# the image height
\# : annotation
\# A comment
1023 \# maximum value
Magic number
P1: for PBM image
P2/P5: for PGM image (ASCII and binary respectively)
P3/P6: for PPM image (ASCII and binary respectively)

PGM/PPM/PBM Examples

PPM(24 bits)

PBM(1 bit)

P1
\# PBM example
247
000000000000000000000000
01111100111110001111100111110
010000010000010000010010
01110001110001111000111110
010000010000010000010000
01000001111100111110010000
กกกกกกกกกกกกกกกกกกกกกกกก

Bitmap (BMP) Format

$14+40+4$ * infoheader.ncolours $=$ header.offset

Tagged Image Fille Format (TIF/TIFF)

TIFF is a flexible bitmap image format supported by virtually all paint, image-editing, and page-layout applications. Also, virtually all desktop scanners can produce TIFF images.

Other Popular Image Formats

- GIF: Graphics Interchange Format
- PNG: Portable Network Graphics
- RAS: a format native to Sun UNIX platforms
- SGI: developed at Silicon Graphics, and is used for black and white, grayscale and color images.
- PCX: originally designed by ZSoft to be used by PC Paintbrush for MS-DOS. Microsoft later acquired the right to use the PCX format for Microsoft Paintbrush for Windows indirectly increasing the format's popularity.

